Intracortical origins of interocular suppression in the visual cortex.
نویسندگان
چکیده
The response of neurons in the primary visual cortex to an optimally oriented grating is usually suppressed quite dramatically when a second grating of, for example, orthogonal orientation is superimposed. Such "cross-orientation suppression" has been implicated in the generation of cortical orientation selectivity and local response normalization. Until recently, little experimental evidence was available concerning the neurophysiological substrate of this phenomenon, although an involvement of intracortical inhibition was commonly assumed. However, Freeman et al. (2002) proposed that cortical cross-orientation suppression is caused by suppression in the thalamus and depression at geniculocortical synapses. Here, we examine a dichoptic form of cross-orientation suppression, termed interocular suppression and thought to be involved in binocular rivalry (Sengpiel et al., 1995a). We show that its dependency on the drift rate of the suppressing stimulus is consistent with a cortical origin; unlike monocular cross-orientation suppression, it cannot be evoked by very fast-moving stimuli. Moreover, we find that previous adaptation to the orthogonal stimulus essentially eliminates interocular suppression. Because adaptation is a cortical phenomenon, this result also argues in favor of a cortical locus of suppression, again unlike monocular cross-orientation suppression, which is not affected by adaptation to the suppressor (Freeman et al., 2002). Finally, interocular suppression is greatly reduced in the presence of the GABA antagonist bicuculline. Together, our study demonstrates that interocular suppression is substantially different from monocular cross-orientation suppression and is mediated by inhibitory circuitry within the visual cortex.
منابع مشابه
Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry
In an attempt to demonstrate a physiological basis for the alternating suppression of perception when the two eyes view very different contours (binocular rivalry), we studied the responses of neurons in the lateral geniculate nucleus (LGN) and area 17 of cats for drifting gratings of different orientation, spatial frequency and contrast in the two eyes. Almost half of the LGN neurons studied e...
متن کاملOn the Relationship Between Interocular Suppression in the Primary Visual Cortex and Binocular Rivalry
Both classical psychophysical work and recent functional imaging studies have suggested a critical role for the primary visual cortex (V1) in resolving the perceptual ambiguities experienced during binocular rivalry. Here we examine, by means of single-cell recordings and optical imaging of intrinsic signals, the spatial characteristics of suppression elicited by rival stimuli in cat V1. We fin...
متن کاملAltered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys.
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrin...
متن کاملPsychophysical evidence for two routes to suppression before binocular summation of signals in human vision.
Visual mechanisms in primary visual cortex are suppressed by the superposition of gratings perpendicular to their preferred orientations. A clear picture of this process is needed to (i) inform functional architecture of image-processing models, (ii) identify the pathways available to support binocular rivalry, and (iii) generally advance our understanding of early vision. Here we use monoptic ...
متن کاملBinocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression
Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 27 شماره
صفحات -
تاریخ انتشار 2005